Vector 与 ArryaList 的差异

  • 增加了一个可以控制扩容增量的构造方法

    1
    2
    3
    4
    5
    6
    7
    8
    public Vector(int initialCapacity, int capacityIncrement) {
    super();
    if (initialCapacity < 0)
    throw new IllegalArgumentException("Illegal Capacity: "+
    initialCapacity);
    this.elementData = new Object[initialCapacity];
    this.capacityIncrement = capacityIncrement;
    }
  • 修改了默认扩容机制

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    private void grow(int minCapacity) {
    // overflow-conscious code
    int oldCapacity = elementData.length;
    //在没有初始化扩容增量的时候,默认扩容为原来的2倍
    int newCapacity = oldCapacity + ((capacityIncrement > 0) ?
    capacityIncrement : oldCapacity);
    if (newCapacity - minCapacity < 0)
    newCapacity = minCapacity;
    if (newCapacity - MAX_ARRAY_SIZE > 0)
    newCapacity = hugeCapacity(minCapacity);
    elementData = Arrays.copyOf(elementData, newCapacity);
    }
  • 在修改元素的方法上面增加了同步锁

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    public synchronized void addElement(E obj) {
    modCount++;
    ensureCapacityHelper(elementCount + 1);
    elementData[elementCount++] = obj;
    }

    public synchronized boolean removeElement(Object obj) {
    modCount++;
    int i = indexOf(obj);
    if (i >= 0) {
    removeElementAt(i);
    return true;
    }
    return false;
    }
    public synchronized boolean add(E e) {
    modCount++;
    ensureCapacityHelper(elementCount + 1);
    elementData[elementCount++] = e;
    return true;
    }

    public boolean remove(Object o) {
    return removeElement(o);
    }
  • 因为在操作元素的方法上面增加了同步锁,所以查询效率上面 ArryaList 更快

CopyOnWriteArrayList

  • public void add(int index, E element)

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    public void add(int index, E element) {
    final ReentrantLock lock = this.lock;
    //通过lock保证单线程执行
    lock.lock();
    try {
    Object[] elements = getArray();
    int len = elements.length;
    if (index > len || index < 0)
    throw new IndexOutOfBoundsException("Index: "+index+
    ", Size: "+len);
    Object[] newElements;
    int numMoved = len - index;
    if (numMoved == 0)
    newElements = Arrays.copyOf(elements, len + 1);
    else {
    newElements = new Object[len + 1];
    //index前后数组拷贝
    System.arraycopy(elements, 0, newElements, 0, index);
    System.arraycopy(elements, index, newElements, index + 1,
    numMoved);
    }
    newElements[index] = element;
    setArray(newElements);
    } finally {
    lock.unlock();
    }
    }

    通过上述代码可以发现 CopyOnWriterArrayList 实现实现安全的方法为在插入数据时,通过 lock 增加锁,每次在新增数据的时候,都重新新建一个数组,把原有的数组拷贝过来。这也能够保证用户的读取不会受到现在修改的数组影响。对数据读取更优秀,但是因为是拷贝数组,所以更新数据的时候代价更高,效率更低。

  • public E get(int index)

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    private transient volatile Object[] array;

    public E get(int index) {
    return get(getArray(), index);
    }

    private E get(Object[] a, int index) {
    return (E) a[index];
    }


    在查询数据的时候,没有使用 synchronize 的同步代码块,而是通过

1
2
3
4
5
6
7
8
9
10
11
private transient volatile Object[] array;

public E get(int index) {
return get(getArray(), index);
}

private E get(Object[] a, int index) {
return (E) a[index];
}


在查询数据的时候,没有使用 synchronize 的同步代码块,而是通过 volatile 关键字保证可见性。这样可以提高查询的效率

CopyOnWriteArryalist 和 Vector 的区别

  • Vector 对于读取操作都加上了 synchronize 同步锁,这样效率会更慢一些
  • CopyOnWriteArryalist 通过对写数据加 lock 锁。读数据通过 volatile 保证可见,但是在插入数据的时候是复制原有数据,这样的话,查询更快,插入更慢一些

Collections.SynchronizedList

  • 基本实现

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    SynchronizedList(List<E> list) {
    super(list);
    this.list = list;
    }
    SynchronizedList(List<E> list, Object mutex) {
    super(list, mutex);
    this.list = list;
    }
    public boolean equals(Object o) {
    if (this == o)
    return true;
    synchronized (mutex) {return list.equals(o);}
    }
    public int hashCode() {
    synchronized (mutex) {return list.hashCode();}
    }

    public E get(int index) {
    synchronized (mutex) {return list.get(index);}
    }
    public E set(int index, E element) {
    synchronized (mutex) {return list.set(index, element);}
    }
    public void add(int index, E element) {
    synchronized (mutex) {list.add(index, element);}
    }
    public E remove(int index) {
    synchronized (mutex) {return list.remove(index);}
    }

    public int indexOf(Object o) {
    synchronized (mutex) {return list.indexOf(o);}
    }
    public int lastIndexOf(Object o) {
    synchronized (mutex) {return list.lastIndexOf(o);}
    }

    public boolean addAll(int index, Collection<? extends E> c) {
    synchronized (mutex) {return list.addAll(index, c);}
    }

    public ListIterator<E> listIterator() {
    return list.listIterator(); // Must be manually synched by user
    }

    public ListIterator<E> listIterator(int index) {
    return list.listIterator(index); // Must be manually synched by user
    }

    public List<E> subList(int fromIndex, int toIndex) {
    synchronized (mutex) {
    return new SynchronizedList<>(list.subList(fromIndex, toIndex),
    mutex);
    }
    }

    @Override
    public void replaceAll(UnaryOperator<E> operator) {
    synchronized (mutex) {list.replaceAll(operator);}
    }
    @Override
    public void sort(Comparator<? super E> c) {
    synchronized (mutex) {list.sort(c);}
    }

    可以看到基本上还是通过 synchronize 同步代码块实现的

  • 特点

    • 同步代码块锁定的范围更少
    • 可以将 list 下面的任意实现转化成线程安全的集合
    • 但是在迭代 SynchronizedList 是需要手动进行同步处理